Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

نویسنده

  • S. M. Ahadi
چکیده

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of contextdependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clustering. The use of better prior parameters derived from two sets of more reliably trained biphone models has helped in this process. The result is better parameter tying where the tied-state triphone system built in this manner outperforms a similar system in which ordinary Maximum Likelihood (ML) approach was used to estimate the untied triphone system parameters. The technique may also be useful in other tying schemes used in context-dependent modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Bayesian Training for Context-Dependent Modeling in Continuous Persian Speech Recognition

Context-dependent modeling is a widely used technique for better phone modeling in continuous speech recognition. While different types of context-dependent models have been used, triphones have been known as the most effective ones. In this paper, a Maximum a Posteriori (MAP) estimation approach has been used to estimate the parameters of the untied triphone model set used in data-driven clust...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Improved Acoustic Modeling for Continuous Speech Recognition

We report on some recent improvements to an HMMbased, continuous speech recognition system which is being developed at AT&T Bell Laboratories. These advances, which include the incorporation of inter-word, context-dependent units and an improved feature analysis, lead to a recognition system which achieves better than 95% word accuracy for speaker independent recognition of the 1000-word, DARPA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008